STF-1 Over Canada!

The image below was captured by STF-1 on Tuesday May 7, 2019 while traveling over Newfoundland.  In the foreground is the VHF antenna element, and in the background are clouds, ice, and waterways.  The image was taken at an altitude of 500 KM.  STF-1 continues to remain healthy and is operating normally.

20190507_1923STF-1 flies over Canada!

Sunrise over West Virginia!

On Thursday, April 18th, 2019, the STF-1 team successfully down-linked another image that was captured on April 17, 2019, at 06:10 AM EST.  The image was captured while STF-1 was traveling over West Virginia at an altitude of 500 KM. The image shows the sunrise on the Earth with its blue sliver of atmosphere being illuminated. As with previous images, the VHF antenna element is visible in the middle of the image.
test5STF-1 Captures the always beautiful sunrise over West Virginia.

New Image Acquired!

On Friday, March 15th, 2019, the STF-1 team successfully downlinked another image that was captured on March 8th, 2019 at 09:35 EST.  The image shows the curvature of the Earth, cloud cover, the blackness of space, and the Sun reflecting off of the deployed VHF antenna element.

STF-1 continues to remain healthy and operating its experiments.  Downlinks continue to occur daily.  The STF-1 team is coordinating with the West Virginia University science teams and data analysis has started.

stf1-new-image-acquiredSTF-1 - Sends home more postcard worthy images 500km above Earth!

Image Acquired!

On Thursday, January 3rd 2019, the STF-1 team successfully down-linked an image that was captured at approximately 16 minutes after deployment!   The image shows the sun reflecting off the deployed VHF antenna element.  As shown below, the camera is physically located under the antenna element.

STF-1 continues to remain healthy and experiments are beginning.  On January 9, 2019, the STF-1 marked the 10th successful communications pass, where multiple commands were sent to STF-1, and telemetry was received.

Image_Acuired_STF1STF-1 Captured Image - Sun reflecting off of VHF antenna
STF1_CameraSTF-1 Camera and VHF Antenna Locations

STF-1 is Alive and Well!

On Wednesday, December 19, 2018, the STF-1 team made successful contact with West Virginia’s First Spacecraft. The team confirmed via telemetry that STF-1 is in a nominal state, and its power systems are performing very well. Upon release from the kick stage from the Rocket Labs Electron Rocket and sub-sequence power on, STF-1 snapped a picture. The team plans to receive the picture data during our next pass scheduled for this Friday (12/21) as well as continue to start doing checkouts of our on-board instruments.
Thank you to everyone who has made this mission a success!
This is a great day for STF-1, West Virginia, and NASA!

LIFTOFF!

The STF-1 team is excited to announce that on Sunday, December 16, 2018, at 1:33 AM EST West Virginia’s first spacecraft was successfully launched into orbit on the first ever Venture Class Launch Services mission via Rocket Labs Electron Rocket (https://www.rocketlabusa.com/electron/).  The launch can be viewed on-line at https://www.youtube.com/watch?v=F7Kr3664hJs&t=1080s.  The launch took place from Auckland, New Zealand, and STF-1 was one of several payloads housed within California-based Rocket Lab’s Electron vehicle within the ELaNa-19 mission (Educational Launch of Nanosatellites).

5c10350b9f978.imageThe Electron launch vehicle prepping for the ElaNa-19 mission launch.
5c10350c32ad8.imageUp close and personal with the Electron

Years of effort have gone into achieving this moment.  To say that the team is excited about this milestone would be and understatement.  The ITC Lead, and Principal Engineer Justin Morris has this to say about the STF-1 achievement:

“This is West Virginia’s first spacecraft that’s ever been built and tested in the state, so that’s pretty remarkable,” Morris said. “A lot of the folks who worked on this satellite were born and raised in West Virginia, so that’s kind of neat to me, both professionally and personally.”

5ab53a1fa9712.imageSTF-1 - all grown up, and ready to fly!
5ab53a21cd5bc.imageZemerick, and Grubb pose with the completed STF-1 Cube sat

“Just about everyone working on this is from West Virginia.  This shows that there are very capable engineers in high-technology jobs in the area and that West Virginia has the ability to compete, national and globally, with everyone else, even in space.”  — Program Manager Scott Zemerick

5c0fff60e77cd.imageAlways working, always testing ... Engineers Scott Zemerick, and Matt Grubb.

“Besides providing valuable services to NASA, the IV&V Program is motivated to inspire future generations in the areas of science, technology, engineering and mathematics throughout the state while advancing technologies for the nation through partnerships and collaboration with other West Virginia entities.” –NASA IV&V Director Greg Blaney

West Virginia University will perform experiments including measurements to analyze space weather, Precise Orbit Determination, and the durability of III-V nitride based materials.

The ITC team anxiously awaits communication with the cube sat now that the electron and STF-1 have pushed into space and are successfully orbiting the planet at some 600 miles above the surface.  Though the stress and excitement of the launch is now behind the team, work anxiously continues to retrieve data and to track West Virginia’s first satellite in space.  The STF-1 team plans to communicate with the spacecraft via the Wallops Flight Faclility ground station over the next couple of days.  Following, in the next couple of weeks, the STF-1 small satellite will be commissioned, and begin all of its science observations.

LiftoffLiftoff! - Image Credited to Rocket Labs USA

STF-1’s 4 Year Anniversary

This week marks the 4 year anniversary of the first meeting held to discuss the concept of STF-1. The pictures here show STF-1 being loaded into the TYVAK dispenser that will be mounted to the Rocket Lab Electron rocket for launch. The current launch window is expected to be in December of 2018. Check back for updates as December approaches!

STF1 CubeSats inside Rocket Lab facility, located at Huntington Beach California.
Engineer, Matt Grubb, measuring the STF1 cubesat .
STF1 CubeSats inside Rocket Lab facility, located at Huntington Beach California.
Engineers working with the STF1 CubeSats deployer.
STF1 CubeSats inside Rocket Lab facility, located at Huntington Beach California.
STF1 CubeSats getting loaded into the deployer.
STF1 CubeSats inside Rocket Lab facility, located at Huntington Beach California.
An engineer performs a fit check for the STF1 CubeSat.

Delivery

We are proud to announce that STF-1 has made it to the Rocket Lab facility in Huntington Beach, CA, and has successfully been integrated.  STF-1 will now make its way to Mahia, New Zealand.  The launch window currently opens on May 30, 2018.

The team anxiously awaits the launch of West Virginia’s First Spacecraft, Simulation-to-Flight 1 (STF-1)!

STF1-Delivery-Integration
Engineer, Matt Grubb, being interviewed after the integration of STF-1

STF-1_13

Integration Engineers, Matt Grubb, and John Lucas.
Integration Engineers, Matt Grubb, and John Lucas.

Thermal Vacuum Testing

The thermal vacuum or TVAC facility is at Goddard Space Flight Center (GSFC), the parent campus of NASA IV&V.  This facility has been used recently by the Dellingr team and proved they were ready for flight.  First off, what does the TVAC (pictured below) do?

stf1_tvac_gse (2)

This chamber holds the spacecraft in a vacuum, essentially removing the air around and inside of it.  Unfortunately this does not mean the spacecraft floats around inside as gravity still has it’s effect, but this does change the thermal characteristics to those similar to space.  Without air the only means of transferring heat to the spacecraft from an external source is through radiation.  This is possible due to electromagnetic waves.  These same waves are what a thermal imaging camera detects, showing hotter objects as brighter colors and colder ones darker.  The image below is of a deployed antenna system heating up while running.
IR_0521

In addition to all the sensors inside the spacecraft, more were applied externally to ensure proper calibration of those mounted on each of the solar panels.  The spacecraft had to sit on special spacers made from a composite material.  STF-1 in the TVAC chamber is shown below.

stf1_tvac_grubb Once everything was setup, the chamber was placed under vacuum and heated to 60 degrees Celsius or 140 degrees Fahrenheit for over six hours!  This ensured that all components had enough time to reach that temperature and proved that they would still function after exposure to those extreme conditions.  After that, four simulated orbits were performed.  The chamber would cycle from 50 degrees Celsius to 0 degrees Celsius or freezing.  Tests were performed throughout these procedures and all passed!  STF-1 is currently undergoing preparations for vibration testing in a couple of weeks.