While STF-1 will be hitching a ride up to the thermosphere on the Electron, once it is deployed, a constant electrical power supply will be necessary for each of its scientific experiments to be carried out successfully. From the GPS to the camera to the radio, most everything on STF-1 requires electrical power to ensure that it functions properly. However, due to the standardized size and weight of CubeSats, STF-1 could never carry enough batteries to power its entire mission. It doesn’t have nearly enough volume, and it’s only allowed to weigh 4 lb! Instead, STF-1 uses 5 solar panels – which are placed on all faces but the bottom – to provide power to the other systems. After converting the sun’s rays to electricity, the solar panels pass the electricity to the ClydeSpace EPS, which stores them in the batteries. Then, the EPS has the ability to send electricity from the batteries to various systems in STF-1.
It doesn’t take long to realize that the role that the ClydeSpace EPS plays is a major one, and that the mission can’t afford any mishaps with the EPS’s capabilities. A failure in the EPS would almost certainly result in subsequent mission failure. Above, the STF-1 team performs an initial checkout of the Electronic Power Supply using a laptop, an Aardvark (host adapter), and a power supply. The power supply (pictured in back) simulated the input of electricity that would have been provided by the 5 solar panels. Then, I2C commands were sent from the laptop through the Aardvark to test the EPS. Ultimately, the team found that the EPS functioned well, meaning that it is ready for future hardware testing and that we’re one step closer to putting WV’s First Spacecraft into space!