STF-1 is scheduled to launch on ELaNA XIX via a brand new rocket called the Electron.  This rocket is currently being built and tested by Rocket Labs USA.  This launch is planned to have an inclination of 85° and an altitude of 500km.  This means that STF-1 will travel around the earth from approximately pole to pole every orbit, will travel around the earth about once every hour and a half, and will be about 100km higher than the International Space Station (ISS) but about 35,000km lower than DirectTV and Dish Network TV satellites!

This announcement brings with it some schedule updates:

Mission Readiness Review: March 2017

Delivery: April 2017

Launch: June 2017

This means that the STF-1 team has under a year to get everything done before delivery!  Even better news is that we have already received our first instrument delivery form the Mechanical and Aerospace Engineering department at West Virginia University.  The Inertial Measurement Unit (IMU) was developed at WVU with the help of the University of South Florida under the Small Satellite Technology Partnership.  The IMU design was miniaturized to overcome the size, weight, and power constraints placed on our spacecraft.  The third generation of the board that has been made custom for STF-1 has 32 sensors on it that will be individually calibrated by student designed rate tables and temperature chambers to give us the best possible data.

Updated information has also been provided by all science payloads allowing us to further update the location of all the components.  The recent model with expanded information is shown below.  This slide was presented at the 13th annual CubeSat Developers Workshop along with a full mission overview.


Reaching for the *Laptops*

The Simulation-To-Flight 1 primary objective is, at the most basic level, to be able to run spacecraft flight software on a laptop computer and have it think that it is really in space.  At NASA, we always aim to embrace the goal of “test as you fly, and fly as you test”.   This means developing hardware simulators for each little board or component in STF-1 from the radio to the temperature sensors to make this possible.  The NASA IV&V team has officially named this software package NOS3 or the NASA Operational Simulator for Small Satellites.  This is based on the NOS Engine middleware package developed internally at IV&V.  The objectives are defined as follows:

  • Open source CubeSat risk reduction solution Stars
  • Produce evidence of cost and time savings
  • Develop advanced toolset to identify & resolve software issues
  • Perform meaningful science driven from research and institutions
  • Foster and spread knowledge throughout NASA

The major benefits of this package are the ability to perform flight software (FSW) development earlier, aid in the verification and validation process, perform early application development and payload integration, and mission planning or day in the life activities.  This package is already easy to deploy and begin using.  A sample of what it looks like is provided below.


Currently, NOS3 utilizes two open source projects from GSFC.  These include Core Flight System (CFS) and the 42 Dynamic Simulator.  These packages are paired with the open source project COSMOS from Ball Aerospace and custom developed software to provide the full open source solution to users.  The process to make this available to download is currently underway.


How MUSIC Moves Us

The sounding rocket MUSIC successfully launched on March 1st, 2016.  West Virginia University flew multiple payloads including early versions of the Physics and MAE experiments.  These flew approximately 115 miles to apogee and included a VLF receiver, particle detector, and the MEMs IMU.  Data was received from these experiments and is currently being processed at WVU.


STF-1 has also selected a high-school and multiple college level interns to aid in the mission over the summer.  Their goals  are to aid in outreach activities by preparing teaching materials,  as well as aiding in mission software development and testing.  The website and blogs will also be updated with progress reports throughout their internships.

In addition to the other interns, a WVU graduate student was selected to aid in the thermal analysis for the mission.  A thermal analysis is needed due to the extreme environment and temperature swings that will occur in low Earth orbit or LEO.  The INSIDE of the spacecraft is expected to fluctuate between -40 and 85 degrees Celsius!  That means that it will be 185 degrees Fahrenheit inside at certain points and that isn’t even the worst case scenario.  Luckily, we can utilize different coatings on the external components to help protect the internal components and keep everything working.